Experimental validation of a kV source model and dose computation method for CBCT imaging in an anthropomorphic phantom

نویسندگان

  • Yannick Poirier
  • Mauro Tambasco
چکیده

We present an experimental validation of a kilovoltage (kV) X-ray source characterization model in an anthropomorphic phantom to estimate patient-specific absorbed dose from kV cone-beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT-dose index (CTDIw) dose estimates. We simulated the default Varian on-board imager 1.4 (OBI) default CBCT imaging protocols (i.e., standard-dose head, low-dose thorax, pelvis, and pelvis spotlight) using our previously developed and easy to implement X-ray point-source model and source characterization approach. We used this characterized source model to compute absorbed dose in homogeneous and anthropomorphic phantoms using our previously validated in-house kV dose computation software (kVDoseCalc). We compared these computed absorbed doses to doses derived from ionization chamber measurements acquired at several points in a homogeneous cylindrical phantom and from thermoluminescent detectors (TLDs) placed in the anthropomorphic phantom. In the homogeneous cylindrical phantom, computed values of absorbed dose relative to the center of the phantom agreed with measured values within ≤2% of local dose, except in regions of high-dose gradient where the distance to agreement (DTA) was 2 mm. The computed absorbed dose in the anthropomorphic phantom generally agreed with TLD measurements, with an average percent dose difference ranging from 2.4% ± 6.0% to 5.7% ± 10.3%, depending on the characterized CBCT imaging protocol. The low-dose thorax and the standard dose scans showed the best and worst agreement, respectively. Our results also broadly agree with published values, which are approximately twice as high as the nominal CTDIw would suggest. The results demonstrate that our previously developed method for modeling and characterizing a kV X-ray source could be used to accurately assess patient-specific absorbed dose from kV CBCT procedures within reasonable accuracy, and serve as further evidence that existing CTDIw assessments underestimate absorbed dose delivered to patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations.

Kilovoltage (kV) cone beam computed tomography (CBCT) images suffer from a substantial scatter contribution. In this study, Monte Carlo (MC) simulations are used to evaluate the scattered radiation present in projection images. These predicted scatter distributions are also used as a scatter correction technique. Images were acquired using a kV CBCT bench top system. The EGSnrc MC code was used...

متن کامل

Commissioning kilovoltage cone‐beam CT beams in a radiation therapy treatment planning system

The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The be...

متن کامل

Implementation of full/half bowtie filter models in a commercial treatment planning system for kilovoltage cone‐beam CT dose estimations

The purpose of this study was to implement full/half bowtie filter models in a com-mercial treatment planning system (TPS) to calculate kilovoltage (kV) cone-beam CT (CBCT) doses of Varian On-Board Imager (OBI) kV X-ray imaging system. The full/half bowtie filter models were created as compensators in Pinnacle TPS using MATLAB software. The physical profiles of both bowtie filters were imported...

متن کامل

Evaluation of the gray level in CBCT systems and its relationship with HU in CT Scanners

Introduction: Cone-beam CT (CBCT) is an imaging system which offers three-dimensional (3D), multiplanar images and has many advantages over computed tomography (CT) including shorter acquisition times for the resolution desired in dentistry, lower radiation dose to the patient, reasonable price and higher spatial resolution but CBCT scanners are unable to display actual Hounsf...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016